Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
Immunol Cell Biol ; 100(4): 250-266, 2022 04.
Article in English | MEDLINE | ID: covidwho-1759190

ABSTRACT

The ongoing coronavirus disease 2019 (COVID-19) pandemic perpetuated by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants has highlighted the continued need for broadly protective vaccines that elicit robust and durable protection. Here, the vaccinia virus-based, replication-defective Sementis Copenhagen Vector (SCV) was used to develop a first-generation COVID-19 vaccine encoding the spike glycoprotein (SCV-S). Vaccination of mice rapidly induced polyfunctional CD8 T cells with cytotoxic activity and robust type 1 T helper-biased, spike-specific antibodies, which are significantly increased following a second vaccination, and contained neutralizing activity against the alpha and beta variants of concern. Longitudinal studies indicated that neutralizing antibody activity was maintained up to 9 months after vaccination in both young and middle-aged mice, with durable immune memory evident even in the presence of pre-existing vector immunity. Therefore, SCV-S vaccination has a positive immunogenicity profile, with potential to expand protection generated by current vaccines in a heterologous boost format and presents a solid basis for second-generation SCV-based COVID-19 vaccine candidates incorporating additional SARS-CoV-2 immunogens.


Subject(s)
COVID-19 , Vaccinia , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Immunity, Cellular , Immunity, Humoral , Mice , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL